HLM—分层线性模型分析软件
HLM
软件简介
HLM处理多层次数据(Hierarchical Data) ,进行线性和非线性的阶层模型分析。在HLM中,不仅改善了原有的界面,而且增加了新的统计功能。比如对线性模型增加了交叉随机效应 (Cross-classified random effects);对三层数据增加了多项式模型 (Multinomial Models)。该工具能处理多层次数据(HierarchicalData) ,进行线性和非线性的阶层模型分析。
社会研究和其它领域中,研究的数据通常是分层(hierarchical)结构的.也就是说,单独研究的课题可能会被分类或重新划分到具有不同特性的组中.在这种情况下,个体可以被看成是研究的第一层(level-1)单元,而那些区分开他们的组也就是第二层(level-2)单元.这可以被进一步的延伸,第二层(level-2)的单元也可以被划分到第三层单元中.在这个方面很典型的示例,比如教育学(学生位于第一层,学校位于第二层,学校分布是第三层),又比如社会学(个体在第一层,相邻的个体在第二层).很明显在分析这样的数据时,需要专业的软件.分层线性和非线性模型(也称为多层模型)的建立是被用来研究单个分析中的任意层次间的关系的,而不会在研究中忽略掉分层模型中各个层次间相关的变异性.
HLM程序包能够根据结果变量来产生带说明变量(expl lanatory variable,利用在每层指定的变量来说明每层的变异性)的线性模型.HLM不仅仅估计每一层的模型系数,也预测与每层的每个采样单元相关的随机因子(random effects).虽然HLM常用在教育学研究领域(该领域中的数据通常具有分层结构),但它也适合用在其它任何具有分层结构数据的领域.这包括纵向分析( longitudinal analysis),在这种情况下,在个体被研究时的重复测量可能是嵌套(nested)的.另外,虽然上面的示例暗示在这个分层结构的任意层次上的成员(除了处于最高层次的)是嵌套(nested)的,HLM同样可以处理成员关系为"交叉(crossed)",而非必须是"嵌套(nested)"的情况,在这种情况下,一个学生在他的整个学习期间可以是多个不同教室里的成员.
HLM程序包可以处理连续,计数,序数和名义结果变量(outcomevarible),及假定一个在结果期望值和一系列说明变量(explanatory variable)的线性组合之间的函数关系.这个关系通过合适的关联函数来定义,例如identity关联(连续值结果)或logit关联(二元结果).
“沈阳软件公司”的新闻页面文章、图片、音频、视频等稿件均为自媒体人、第三方机构发布或转载。如稿件涉及版权等问题,请与
我们联系删除或处理,客服QQ:55506560,稿件内容仅为传递更多信息之目的,不代表本网观点,亦不代表本网站赞同
其观点或证实其内容的真实性。
热门文章
使用“扫一扫”即可将网页分享至朋友圈。